
Practice Definition Rationale Questions

Planning
Discussing and representing

problems visually before
attempting to solve them.

Students are often inclined to start
coding without a clear plan in mind.

It’s important to pause and plan
before jumping in.

 What is the problem you’re trying to solve?

 What have you done so far (if anything)?

 Would it help to read the instructions or to draw a
picture?

Decomposition
Breaking down complex
tasks into smaller, more

manageable pieces.

Large tasks often seem
insurmountable at first. The key is
to break them down and build and

test solutions incrementally.

 Can the overall task be broken into smaller pieces?

 What’s the first piece you could build and test?

 What will come second, third, fourth, etc.?

Prediction
Formulating and articulating

expectations for how a
program will work.

Every time students run their code,
they should have a hypothesis

about what will happen.

 What do you expect your code to do?

 How will you know if your code is working (or not)?

 If it doesn’t work, what will you try next?

Observation
Carefully watching to see
how a program actually

performs.

To see whether code is working,
students need to observe carefully,

keeping test conditions as
consistent as possible.

 What do you see happening when the code runs?

 How does what you see differ from what you want?

 Are your testing conditions identical every time?

Debugging
Identifying and resolving

problems (i.e. "bugs") in a
computer program.

A program rarely works perfectly
the first time. Coding is an iterative
process of testing, debugging, and

refinement.

 Where in your program does the problem occur?

 Can different sections be tested in isolation?

 What could you change to create more evidence?

Abstraction
Noticing similarities among

pieces of a program or
computing challenge.

Often, a first attempt to complete a
computing task will reveal patterns

that can be used to simplify the
code.

 Does this program contain repeating patterns?

 Do any sprites or objects behave in similar ways?

 Could loops or functions be used to simplify the code?

Collaboration
Working and

communicating with others
to solve problems.

Coding is not a solitary pursuit. It’s
important for students to be able
to work with others, and discuss

problems and solutions.

 How can you divide responsibilities efficiently?

 How would you explain your code to a classmate?

 What is a challenge you encountered and overcame in
this project?

