Practice Definition Rationale Questions
. . . Students are often inclined to start What is the problem you’re trying to solve?
Discussing and representing . . L . .
. . coding without a clear plan in mind. What have you done so far (if anything)?
Planning problems visually before

attempting to solve them.

It’s important to pause and plan
before jumping in.

Would it help to read the instructions or to draw a
picture?

Decomposition

Breaking down complex
tasks into smaller, more
manageable pieces.

Large tasks often seem
insurmountable at first. The key is
to break them down and build and

test solutions incrementally.

Can the overall task be broken into smaller pieces?
What's the first piece you could build and test?
What will come second, third, fourth, etc.?

Prediction

Formulating and articulating
expectations for how a
program will work.

Every time students run their code,
they should have a hypothesis
about what will happen.

What do you expect your code to do?
How will you know if your code is working (or not)?
If it doesn’t work, what will you try next?

Observation

Carefully watching to see
how a program actually
performs.

To see whether code is working,
students need to observe carefully,
keeping test conditions as
consistent as possible.

What do you see happening when the code runs?
How does what you see differ from what you want?
Are your testing conditions identical every time?

Debugging

Identifying and resolving
problems (i.e. "bugs") in a
computer program.

A program rarely works perfectly
the first time. Coding is an iterative
process of testing, debugging, and
refinement.

Where in your program does the problem occur?
Can different sections be tested in isolation?
What could you change to create more evidence?

Abstraction

Noticing similarities among
pieces of a program or
computing challenge.

Often, a first attempt to complete a
computing task will reveal patterns
that can be used to simplify the
code.

Does this program contain repeating patterns?
Do any sprites or objects behave in similar ways?
Could loops or functions be used to simplify the code?

Collaboration

Working and
communicating with others
to solve problems.

Coding is not a solitary pursuit. It’s
important for students to be able
to work with others, and discuss

problems and solutions.

How can you divide responsibilities efficiently?

How would you explain your code to a classmate?
What is a challenge you encountered and overcame in
this project?




